skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhatnagar, Nikita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The vascular plant-specific, cysteine-rich type III Gγ proteins, which are integral components of the heterotrimeric G-protein complex, play crucial roles in regulating a multitude of plant processes, including those related to crop yield and responses to abiotic stresses. The presence of multiple copies of type III Gγ proteins in most plants and a propensity of the presence of specific truncated alleles in many cultivated crops present an ambiguous picture of their roles in modulating specific responses. AGG3 is a canonical type III Gγ protein of Arabidopsis, and its overexpression in additional model crops offers the opportunity to directly evaluate the effects of protein expression levels on plant phenotypes. We have shown that AGG3 overexpression in the monocot model Setaria viridis leads to an increase in seed yield. In this study, we have investigated the response of the S. viridis plants overexpressing AGG3 to heat stress (HS), one of the most important abiotic stresses affecting crops worldwide. We show that a short span of HS at a crucial developmental time point has a significant effect on plant yield in the later stages. We also show that plants with higher levels of AGG3 are more tolerant to HS. This is attributed to an altered regulation of stress-responsive genes and improved modulation of the photosynthetic efficiency during the stress. Overall, our results confirm that AGG3 plays a crucial role in regulating plant responses to unfavorable environmental conditions and may contribute positively to avoiding crop yield losses. 
    more » « less
  2. Summary The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G‐proteins are key mediators of ABA responses. Both ABA and G‐proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G‐protein signaling remains uncharacterized.To probe the role of reversible protein oxidation in plant stress response and its dependence on G‐proteins, we determined the ABA‐dependent reversible redoxome of wild‐type and Gβ‐protein null mutantagb1of Arabidopsis.We quantified 6891 uniquely oxidized cysteine‐containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G‐proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA‐ and G‐protein‐dependent redox changes, many of which occurred on proteins not previously linked to them.We report the most comprehensive ABA‐dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G‐proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G‐proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses. 
    more » « less